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The flow of a linearly stratified fluid past a sphere is considered experimentally 
in the Froude number Fi, Reynolds number Re, ranges 0.005 < Fi < 20 and 
5 < R e  < 10000. Flow visualization techniques and density measurements are used 
to describe the rich range of characteristic flow phenomena observed. These different 
flow patterns are mapped on a detailed Fi against Re flow regime diagram. In most 
instances the flow patterns were found to be very different from those observed in 
homogeneous fluids. Vortex shedding characteristics, for example, were found to be 
dramatically affected by the presence of stratification. Where possible, the results are 
compared with available analytical and numerical models. 

1. Introduction 
The study of wakes formed by the steady motion of blunt three-dimensional 

obstacles through both homogeneous and stratified fluids has been of long-standing 
interest to the fluid dynamics community. The most fundamental geometry in this 
regard is that of thc sphcre and the most basic fluid is that for which the medium is 
homogeneous and incompressible. It is well known that the flow character for this 
configuration, assuming that bounding surfaces are far from the sphere, depends on 
a single parameter, the Reynolds number Re = UD/v, where U is the free-stream 
speed, D the sphere diameter and v the kinematic viscosity. Surveys of the literature 
on this problem are contained, for example, in the papers by Torobin & Gauvin 
(1959, 1960) and Pao & Kao (1977). 

For Re 5 1 the classical Stokes and Oseen approximations can be applied with the 
flow being fully attached to the sphere. The structure of the wake a t  moderate 
Reynolds numbers (i.e. 1 5 Re 5 2000) has been discussed by Rosenhead (1953), 
Taneda (1956), Magarvey & MacLatchy (1965), Achenbach (1974), Nakamura 
(1976), Pao & Kao (1977), Kim & Durbin (1988), among others. For Re 2 25, the flow 
begins to separate forming a bubble region on the downstream side of the sphere ; see 
Nakamura (1976). Taneda (1956) has discussed this attached bubble region flow 
regime both theoretically and experimentally ; his experiments were in the range 
9 5 Re 5 133. Taneda's study shows that the size and extent of the bubble region 
increases with Re, with unsteady wake flows first becoming apparent at Re 2 130. 
Nakamura suggests that steady flows can be observed to Re x 190. For Re 2 400 the 
unsteady attached bubble begins to shed periodically from the sphere and advect 
downstream. Some suggestions on the nature of the shed vortices have been made by 
Achenbach (1974) and Pao & Kao (1977), however, the actual structure is still 
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FIGURE 1. Physical system. 

unclear. The wake becomes turbulent when the Reynolds number is larger than 
about 2000. 

The case of flow past a sphere for fluid systems which are continuously (linearly) 
stratified is the focus of the present investigations. The study of such flows is 
motivated by potential applications to geophysical systems such as the flow past 
topographic features of limited horizontal extent in the atmosphere or oceans (i.e. 
stratification is important but background rotation is not), self-propelled bodies 
moving through the oceanic thermocline and currents impinging on offshore 
structures and moorings. 

The physical system considered herein is sketched schematically in figure 1. A 
liquid of mean density po and constant buoyancy frequency N = [ (g/p, )  (ap/8z)] i  is in 
uniform rectilinear motion U past a sphere of diameter D,  g is the acceleration of 
gravity and p the density. The flow takes place in a tank of length L,  width W and 
the fluid has a depth H .  The bottom, ends and sides of the tank are plane solid 
surfaces, while the upper boundary is free. In  the experiments, the stratification is 
established using salt water, as described below, and the fluid motion is realized by 
towing the sphere through a fluid otherwise at rest with respect to the tank. We will 
refer to the rectangular Cartesian coordinate system (2, y, z )  relative to an observer 
fixed to the sphere. 

From dimensional analysis the characteristics of the flow should depend on the 
following parameters : 

U Fi = - , internal Froude number, 
ND 

UD 
Re = - , Reynolds numbcr, 

V 

V 

K 
Sc = -, Schmidt number and 

geometrical parameters. 
D D D  - 
W ’ Z ’ H ’  

It is assumed that the times over which the experiments are conducted are 
substantially less than the timescales for salt diffusion and that the density gradients 
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in all regions of the flow are not too large; the Schmidt number is thus unimportant. 
It is further assumed that W ,  L, H >> D so that geometrical effects may be neglected. 
The problem is thus reduced to  a two-parameter one; i.e. Pi and Re. The initial 
objective of the study will be to describe the rich variety of flows that are observed 
as these parameters are varied over the practical range of the experimental systems 
employed; i.e. 0.005 < Pi  < 20 and 5 < Re < 10000. This portion of the work follows 
closely the similar investigation by Boyer et al. (1989) for a horizontal right circular 
cylinder. 

The second objective is to quantify the observed flow fields, to apply scaling 
analyses and to compare with available theories, so as to understand more fully the 
physical processes involved ; these studies will include such observable quantities as 
dividing streamline heights, lee-wave parameters and characteristics of shed vortices. 
Before discussing the present experiments, let us consider some other recent studies 
of stratified flow past a sphere and other three-dimensional obstacles. 

The ability of a stratified fluid to  propagate internal wave motions is of 
fundamental importance in the flow behaviour in a stratified environment. One could 
compare the motion of a sphere moving horizontally through a stratified fluid with 
a three-dimensional internal-wave disturbance which propagates with a phase speed 
the same as the sphere’s velocity. At low Fi ,  the wavelength of  the resulting waves 
is quite small compared to the size of the sphere. The vertical motion adjacent to  the 
sphere would then also be small. At higher F i ,  the corresponding wave field (and fluid 
kinetic energy) would be sufficiently energetic for significant vertical motions to 
exist. For disturbance velocities with wavelengths comparable to the diameter of the 
sphere, the wave field intensifies, creating velocity and pressure distributions 
adjacent to the body which are quite different from those observed a t  lower speeds. 
The potential for the velocity and pressure fields to significantly alter the boundary- 
layer flow, separation behaviour and wake structure thus exists. 

The limiting cases of Fi 9 1 and F i  < 1 are useful considerations in addressing the 
general problem. In the limit of very small Froude numbers, the fluid is constrained 
to  flow around the object, rather than over or under it. In  this quasi two-dimensional 
case, the flow at any given depth should resemble the flow around a vertical two- 
dimensional cylinder whose cross-section is the same as the object’s cross-section at 
that elevation. The low Re-Fi theory of Drazin (1961), which was extended by 
Brighton (1978), is based on a perturbation of this two-dimensional behaviour, where 
any vertical displacements in the fluid are seen to be of the order of Fi2.  For very 
large Froudc numbers, on the other hand, the flow would be expected to resemble the 
unstratified flow behaviour discussed above. In  fact, in one of the more descriptive 
discussions of the wake behaviour of a homogeneous flow past a sphere, Pao & Kao 
(1977) used a slightly stratified fluid to enable them to visualize the flow patterns 
experimentally. 

In  the range of finite Froude and moderate Reynolds numbers, the literature on 
the subject is somewhat fragmented. On the experimental side, Debler & Fitzgerald 
(1968), and Debler (1973) were among the first to report on investigations of low- and 
moderate-Reynolds-number flows a t  finite Froude number. Some of their 
photographs have been widely cited and reproduced. It must be noted, however, that 
other observed flow behaviour which they reported (e.g. the non-axisymmetric 
attached-vortex regime discussed below) has not been given the notice it deserves. 
Unfortunately, both reported studies were lacking in the experimental detail that is 
necessary to calculate adequately the Froude numbers of a number of the cited flow 
situations. 
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318 Q .  Lin, W .  R .  Lindberg, D .  L .  Boyer and H .  J .  S .  Fernando 

Although there have been numerous other experimental studies concerned with 
stratified flow past a sphere, a systematic presentation of the variation of 
characteristic flow patterns with Fi ,  Re has not been delineated clearly. Experiments 
of Mason (1977) and Lofquist & Purtell(l984) demonstrated that the drag coefficient 
is influenced by the presence of stratification. In  their experiments, for Pi  6 3, the 
drag coefficient was increased by as much as 25% over the corresponding 
homogeneous case a t  the same Re owing to lee-wave drag effects. For Fi 3 ,  the drag 
coefficient was decreased owing to turbulence suppression in the wake. (It is 
important to note that drag and other flow phenomena are also Reynolds number 
dependent.) Further experiments on the drag on two- and three-dimensional 
obstacles have been conducted recently by Castro, Snyder & Baines (1990). Lofquist 
& Purtell (1984) also report measurements of both horizontal and vertical separation 
angles in their flows as a function of F i ,  where the lee-wave suppression of separation 
is quite apparent. These authors also provide a number of shadowgraphs delineating 
flow observations, particularly in the turbulent flow regime ; these experiments are 
incorporated on our flow-regime diagram. 

Hanazaki ( 1988) presented numerical calculations on flow patterns and internal 
wave fields for flows at a fixed Re = 200 and internal Froude numbers (our definition : 
note that Hanazaki defined the Froude number in terms of the sphere radius while 
in the present study the diameter is used) in the range 0.125 < Fi < 100. The 
Hanazaki study revealed the important role of internal wave structure on the near 
flow field, specifically in the potential for complete suppression of a separated region 
in the lee of the sphere and in the alteration of the pressure and velocity fields by the 
wave structure. For Fi  5 0.2, the Hanazaki flows are approximately two-dimensional 
and are in qualitative agreement with Drazin’s ( 1961) three-dimensional, low-Pi 
theory. Because Hanazaki’s calculations were limited to a single Re and Pi 2 0.125, 
the study covered only a very limited region of dimensionless parameter space, and 
thus did not address many of the phenomena inherent to  the general problem of 
linearly stratified flow past a sphere. 

The dividing streamline height H ,  is the vertical coordinate z = fH, of the 
upstream streamlines along y = 0 that will just pass over or under the sphere and is 
a useful concept in the discussion of stratified flows. Drazin (1961), in a nonlinear 
theory, determined H ,  as 

H 
(1.1) s- 

9) - 1 - 2 a F i ,  

where a is a constant. Hanazaki’s (1988) numerical predictions for a range from 
0.8 < a < 1.2. Sheppard (1956) determined an estimate of 2H,/D based on a very 
simple physical hypothesis. He postulated that a fluid parcel could rise over a hill 
only if it had sufficient kinetic energy upstream of the obstacle to overcome the 
potential energy required to raise the parcel from its upstream elevation t o  the top 
of the hill. Sheppard’s prediction for the normalizing dividing streamline height H* 
is 

which is the same as Drazin’s (1961) result with a = 1.  Hanazaki’s (1988) results 
roughly support Sheppard’s formula. Hunt & Snyder (1980) and Castro et al. (1983) 
investigated stratified flow over three-dimensional obstacles giving particular 
attention to the dividing streamline height concept and to the formation of internal 
waves. I n  a follow-on study, Snyder et al. (1985) confirmed the validity of Sheppard’s 
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(1956) formula for a range of roughly axisymmetric hill shapes and a variety of stable 
density profiles. Snyder et al. (1985) suggested that further work was needed to 
determine firmly the limits of applicability of the modelling experiments. 

For certain regions of parameter space, lee waves are found downstream of 
obstacles in stratified flows. Crapper (1959), using a linearized wave equation, 
estimated the normalized lee wavelength AID for a three-dimensional obstacle, which 
for the sphere reduces to 

(1.3) 
h 
- = 271. Fi ,  
D 

along the plane y = 0. 
Honji (1987) reported on four separate experiments at  different Fi ,Re  com- 

binations. His observations were made in the horizontal plane of symmetry and are in 
good agreement with the flow categorizations presented below ; his experiments are 
also included on our flow-regime diagram. Honji did not systematically vary Re and 
Fi ,  as we have done. 

Motivated by potential applications to the flow past individual mountain peaks in 
the Earth’s atmosphere (e.g. see Berger & Wille 1972) and oceans, Brighton (1978) 
conducted a series of experiments in a closed-circuit stratified water channel on the 
flow past bottom-mounted truncated cylinders, hemispheres and cones. Brighton’s 
studies considered Froude numbers (based on obstacle heights) from 0.03 to 0.3 and 
Reynolds numbers (based on base diameter) from 100 to 1000. For these parameter 
ranges he found the flows to be approximately two-dimensional (i.e. horizontal) 
except near the tops of the obstacles. For sufficiently large Froude numbers, 
Brighton found cowhorn-shaped eddies with horizontal axes in the obstacle lee a t  the 
elevation of the top of the obstacle. He observed vortex shedding at sufficiently large 
Re provided Fi 5 0.15 (our definition). The shedding frequency was found to be the 
same at all heights ; i.e. the vortices had vertical coherence. The Brighton findings are 
also in agreement with the present studies. Because of the rather thick boundary 
layer on the floor of his water channel (i.e. his upstream conditions were not uniform), 
Brighton’s experiments have not been incorporated on our flow-regime diagram. 

The near-wake structure of a sphere in a stratified flow has recently been studied 
in a series of experiments by Chashechkin & Sysoeva (1988), Sysoeva & Chashechkin 
(1988) and Chashechkin (1989). These authors reported that when the separation line 
on the sphere is projected on a vertical cross-stream plane, a rectangle in a certain 
Froude number range is formed ; i.e. the cross-section of the wake is approximately 
rectangular. 

Interest in the behaviour of stratified turbulent wakes has motivated a 
considerable amount of study of higher-Reynolds-number flows past bluff bodies. 
The review article by Lin & Pao (1979) summarizes many of the results of that effort. 
The process of generation, evolution and decay of the turbulent wake has been 
examined in some detail. The very striking evolution of almost two-dimensional 
vortex structures at  large distances downstream of the disturbance has been noted 
by many researchers. These ‘pancake ’ vortices or coherent structures evolve from a 
turbulent near wake which collapses because of the presence of background 
stratification. The evolution of the large scales into such well-defined horizontal 
structures suggests that there is periodic large-scale vortical motion in the near wake 
which does not decay as rapidly as the small-scale turbulence in the near wake 
collapsing mixed region (Hopfinger 1987). 

In $2, the experimental facility and experimental techniques employed are 
discussed. In  $ 3, the experimental observations of the various characteristic flow 
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patterns are discussed and placed on an / ( ’ i , K e  flow-regime diagram. As each 
characteristic flow is discussed. various quantitative measures of the flow 
observations along with scaling analyses to describe the physics of the various 
phenomena observed are also includcd. A summary and concluding remarks are 
given in $4. 

2. Experimental facility and techniques 
The experiments were conducted independently in tow-tank facilities located at 

the University of Wyoming (UW) and at  Arizona State University (ASU). Each 
facility has a computer-controlled towing carriage mounted on rails along the tank 
walls to translate model obstacles and experimental accessories along the tank axis. 
The carriages can be operated in a time-dependent translational mode but in the 
present experiments only steady speeds were employed. The tanks are filled with a 
linear stratification using salt-stratified solutions by the well-known Oster (1965) 
two-tank method. The density profiles were measured by either removing fluid 
samples and measuring the density with a refractometer or by using traversing 
conducting probes. 

Owing to  the zero-buoyancy-flux boundary condition along the free surface and 
along the tank bottom, and owing to evaporation, the linear density gradients near 
these boundaries are destroyed with time. The desired linear profiles are maintained 
approximately by adding fresh water daily along the free surface and introducing 
appropriate amounts of salt crystals along the tank bottom. 

In the UW experiments two towing arrangements were employed; (i)  a towing 
wire, which extended the entire length of the channel, and (ii) a sting support, where 
each body was supported by a thin tapcred rod which was attached a t  the body’s aft 
end. A discussion of the two towing methods is contained in the Appendix. A series 
of studies was performed with each towing arrangement ; however, only the results 
and observations of the sting-support studies are reported here. The sting support 
used a stiff 27 cm long rod, whose diameter tapered from 0.64 cm to 0.2 em. The rod 
was supported by a thin symmetrical airfoil which led to the towing carriage above 
the channel. 

In the ASU experiments, the model spheres were supported by taut nylon cord 
(0.03 cm diameter) or steel wire (0.05 cm diameter) passing through the sphere 
centre. One end of the cord or wire was aonnccted to a point above the water level 
and toward the front right-hand side of the towing carriage. The other end was 
attached to the bottom of a thin knife-edged plate rigidly attached to the left-hand 
rear side of the carriage and reaching to a level approximately 0.5 cm above the tank 
floor. The support wire orientation was thus a t  an angle of about 17’ from the tank 
centreline. This method of supporting the models eliminated the ‘sag’ that  would 
have occurred by a wire oriented along the channel axis. Furthermore, the boundary 
layers that would grow along the wire for a streamwise orientation were also 
eliminated (see the Appendix). During the experiments, sphere vibrations were 
negligible over the entire speed range investigated. Time exposures of the sphere, for 
example, for periods as long as 60s indicatcd no blurring of thc sphere image. 
Furthermore, for the experiments conducted, there was no evidence of the support 
wire significantly affecting the now in its near wake. Further support for this 
conclusion is that  the UW experiments and the ASU experiments are in agreement. 

A variety of flow-visualization techniques including shadowgraphs, neutrally 
buoyant tracer particles, dye traccrs and reflective flakes were used extensively in 



StratiJied flow past a sphere 32 1 

these studies. Observations were made routinely from both horizontal and vertical 
perspectives. Both 35 mm still and video photography were used. 

Shadowgraph images for both horizontal and vertical planes were obtained by 
directing a high intensity arc lamp source through a condensing lens onto a Fresnel 
lens which produced uniform parallel light through horizontal or vertical sections of 
the channel. Images on a Mylar sheet on the opposite side of the channel were then 
photographed, usually with some slight observation angle in order to avoid the 
camera being in a direct line with the light source. The basic three-dimensionality of 
the density structure cannot be determined from the images produced by these 
techniques : the sharpness is degraded, vis-h-vis the images in Boyer et al. (1989), and 
the density structure inferred by these images is an integrated cross-sectional value. 
The need for a minimum of two viewing planes is thus essential. The density 
gradients for the low Fi,  low Re experiments for the sphere were so weak that the 
shadowgraph technique could not be employed effectively. This is in contrast to the 
cylinder experiments for which excellent shadowgraphs could be obtained at small 
Fi,Re combinations; see, for example, figure 3 of Boyer et al. (1989). 

Polystyrene beads of nominal diameter 0.05 cm and density 1.040 f0.005 g cm-3 
were used as tracer particles. The natural density variation of the particles and 
background density distribution employed were such as to give a quite uniform 
particle distribution in the tank. Particle streak photographs were taken in either 
horizontal or vertical cross-sections by illuminating the tracer particles by a plane 
light-sheet approximately 0.5 em wide. The light source and camera were either fixed 
to the carriage or to the tow-tank. As for the shadowgraphs, particle streak images 
for three-dimensional motions are more difficult to interpret than their two- 
dimensional counterparts. Because the light sheet is quite thin, the three-dimensional 
motions, especially in vertical cross-sections off the centre plane, tend to advect 
tracer particles into and out of the sheet. The particle streak approach of obtaining 
the approximate velocity fields in horizontal and vertical cross-sections thus 
provides only limited quantitative information for such three-dimensional flows. As 
will be noted, however, their use is an excellent method for obtaining qualitative 
information on characteristics of a given flow field. 

Fluorescein dye (ASU) and reflective flakes (UW) were also used for flow 
visualization. The reflective flake particles were supplied in a suspension of isopropyl 
alcohol, which enabled an easy resuspension in a salt-water solution which matched 
the mean density of the water surrounding the object. The particles were small 
enough to stay in suspension for a period of hours, although the specific gravity of 
the particles was of the order of 3. Overnight, the particles dropped out of suspension, 
so a new set of tests could be made without the contamination of the previous day's 
experiments. In these methods the tracers were introduced in the vicinity of the 
upstream stagnation point, prior to translating the sphere. The experiments were 
then initiated by engaging the carriage and the flow field illuminated by the light- 
sheet. Photographs were taken after the flow became fully developed. 

Density profiles in the ambient fluid and in the sphere wake regions were measured 
(ASU) using vertically traversing microscale-conductivity probes. The probe speeds 
were of the order of 25cms-' so that the density profiles, so obtained, were 
approximately instantaneous. The parameters considered in the experiments are 
given in table 1. 
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uw ASU 

1.27. 1.905. 2.54. 3.81. 5.08 0.95, 1.905, 3.175, 3.81, 5.08 

10 
30 
20 

0.063-0.254 
1.1-1.4 

0.05-5 .O 
5-3 x 1 0 3  

7 x 10-3-2.5 

TABLE 1. Experimental parameters 

12.2 
40 

22-25 
0.05-0.23 
0.6C1.48 
0.05-18 
2 ~ 1 0 4  
10-’-15 

3. Experimental observations and measurements 
The first objective of the experimental programme was to  describe and categorize 

the qualitative nature of various characteristic motions observed in the internal 
Froude and Reynolds number ranges attainable with the present facilities ; i.e. 
0.005 < Fi < 20 and 5 < Re < 10000. The observational techniques used to make 
these determinations were shadowgraph, particle streak, dye tracer and reflective 
flake photographs. Figure 2 is a Fi against Re flow regime diagram showing the 
Fi, Re combinations studied (a minimum of one experiment for each data point) and 
the designated flow type observed ; these various characteristic flows will be 
described further below. The UW and ASU experiments are designated by lower and 
upper case letters, respectively. The dashed lines represent the approximate 
boundaries between each flow type. Transitional experiments, for which there was 
some uncertainty in categorizing the flow, are indicated by a tilde above the flow 
designation symbol. The experiments of Lofquist & Purtell (1984) and Honji (1987) 
are also included. The present observations are in good agreement with their results. 

Summary qualitative sketches for each of the characteristic flows are given in 
figure 3. Here we have noted the principal large-scale features of the respective 
motions by focusing on the flow fields observed along streamwise-oriented horizontal 
and vertical planes, both piercing the centre of the sphere, respectively. 

As each characteristic flow is discussed qualitatively, various quantitative 
measures of flow-field observables will be made and compared with available theories 
or scaling arguments. These comparisons lead to a better understanding of the 
physical processes of importance in each of the characteristic flows and, additionally, 
provide a means for comparing future analytical or numerical models with the 
physical experiments. Let us now describe the characteristic flows by proceeding in 
the general direction of small to large Fi ,  Re combinations in figure 2. 

3.1. Steady two-dimensional attached vortices (a, A) 
For Fi 5 0.2 and Re 5 70, and both parameters limited from below by the 
capabilities of the experimental facilities (i.e. see table l ) ,  one obtains a flow for 
which the characterizing feature is a steady attached vortex on the lee-side of the 
sphere. Figure 4 is reflective flake photograph for an experiment a t  Fi = 0.009, 
Re = 19; as can be noted the separation region in the sphere lee (arrow) is relatively 
small, but nevertheless unmistakable ; no cases of unseparated flow were observed in 
the current experimental programmes. We term this characteristic flow as a ‘steady 
two-dimensional attached vortex ’ (symbols a, A on figure 2). Figures 5 (a ) ,  5 (b)  and 
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FIGURE 2. Flow regime diagram; Fi vs. Re. 

5 (c) are, respectively, a dye tracer photograph in the ( z  = 0)-plane, a particle streak 
photograph in the same plane and a particle streak photograph in the (y = 0)-plane 
for the same flow regime. Figure 5 ( d )  is an interpretive sketch of the wake region for 
this regime. The attached vortex is two-dimensional in the sense that at each 
observation level z, the vertical motion is weak owing to the importance of 
stratification at small Fi and to the fact that the Re is not large enough to generate 
strong vertical motions for particles passing over the sphere. The fact that the 
vertical motion is very weak is clearly evident in figure 5 ( c ) .  Note that the 
normalized dividing streamline height based on (1.2) for the experiment of figure 5 (c) 
is H,* x 0.95; figure 5 ( c )  shows clearly that very little vertical motion occurs 
upstream of the sphere. 

Figure 5(a )  is a photograph of the envelope of a fluorescein dye tracer released 
upstream of the sphere; the observer sees a vertical projection so that the outer 
boundary of the bubble region is presumably along the streamwise centreplane, 
z = 0. The term bubble is used herein interchangeably with the lee-side attached 
vortex region. The left to right upward directed white line is the light reflection from 
the sphere support wire ; the wire is visible in many photographs and will not again 
be noted. Figure 5(a )  shows clearly that the flow separation point is somewhat 
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FIGURE 3. Interpretive sketches of flow regimes. 

FIGURE 4. Steady two-dimensional attached vortices (a, A) ; reflective flake photographs, 
Re = 19, Fi = 0.009 and D / H  = 0.19. The arrow indicates the separated bubble region. 

downstream of the maximum sphere dimension in the streamwise centreplane. Note 
that the attached two-element vortex nature of the lee-side flow is clearly evident ; 
no unsteadiness or suggestion of vortex shedding is in evidence. The stagnation 
streamline continues as the streamwise centreline in the sphere lee. Horizontal dye 
tracer photographs a t  elevations z in the range 0 < z 5 H ,  indicate a small decrease 
in the lee-side bubble size with height. 

Figures 5 ( b )  and 5 ( c )  are particle streak photographs for experiments in which the 
light sheet is oriented along the ( z  = 0)-  and ( y  = 0)-planes, respectively. Figure 5 ( b )  
is in agreement with figure 5 ( a ) ,  showing a double eddy structure in the sphere lee 
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t ’  -- 
FIGURE 5. Steady two-dimensional attached vortices (a, A) ; (a) dye tracer along horizontal 
centreplane, z = 0; Re = 63, E’i = 0.03, D/H = 0.18; (b) particle streaks along z = 0;  Re = 63, 
Fi = 0.05, D/H = 0.18; (c )  particle streaks in vertical centreplane y = 0; Re = 83, F i  = 0.03, 
D/H = 0.23; (d) interpretive sketch of lee-side eddies. The total exposure time for the photograph 
in ( 6 )  is t,  = 40 s which corresponds to a normalized exposure time 7, = t,(U/D) = 1.72 based on the 
advective timescale D/U.  The light beam has been chopped so as to define the flow direction from 
short streak to long streak. The corresponding values for (c) are t,  = 40 and 7,  = 1.22; in this 
photograph the particle streak has been chopped three times at approximately equal increments 
of time. 

along x = 0. The dark regions ‘below’ the sphere on figure 5 ( b )  (i.e. y < 0) are due to 
the refraction of the light sheet which has its orientation toward - y. Note also that 
no significant blocking is in evidence immediately ahead of the sphere. This is in 
sharp contrast to  the horizontal circular cylinder situation a t  small Fi as discussed 
by Boyer et al. (1989) and is due to the fact that, in the sphere case, particles can go 
around the obstacle. 
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(4 

FIQURE 6. Oblique view of unsteady two-dimensional vortices (a,,, A,,) from slightly behind the 
sphere on the downstream side; (a) reflective flake photograph and ( b )  interpretive sketch ;Re  = 54, 
Fi = 0.015, D / H  = 0.25. The cusp-like separation line on the sphere is indicated as point C .  The 
towing wire method was used in this example (see Appendix). 

Figure 5 (c) demonstrates that the vertical motion is exceedingly weak in this flow 
regime in the (y = 0)-plane and such observations hold for other streamwise vertical 
planes as well. The observations that the lengths of the particle streaks in the lee of 
the sphere in figure 5 (c) can vary considerably, even for neighbouring particles, is due 
to the fact that fluid particles in the attached eddies have non-zero y-velocity 
components and thus are continually advected in and out of the light-sheet; while 
ideally the y-velocity component along y = 0 should be zero, the fact that the light- 
sheet is approximately 0.5 cm thick leads to observations of particles with non-zero 
y-velocity . 

Figures 6 ( a )  and 6(6) are, respectively, an oblique angle photograph of an 
experiment using reflective flake particles and an interpretive sketch for an 
experiment a t  Pi = 0.015 and Re = 54. The photograph shows the separation bubble 
in the sphere lee as well as depicting the line of separation on the sphere. Note the 
flattened ellipsoidal nature of the bubble region, owing to  stratification effects, and 
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FIGURE 7. Unsteady two-dimensional attached vortices (a”, A,) ; reflective flake photograph of 
horizontal centreplane z = 0, Re = 126, Fi = 0.036, D / H  = 0.25. The arrow indicates the unsteady 
distortion of the separation envelope. 

the cusp-like separation line (point C on figure 6b) as one moves to the polar regions 
(top and bottom) of the sphere. Above this separation line on the sphere’s surface, 
a very thin, vertical sheet of particles is visible in the downstream fluid. This region 
is where the horizontal flow remains attached to the sphere and converges in the 
neighbourhood of the ( y  = 0)-plane. The separation envelope itself is a vortex sheet, 
which presumably continues to be connected during the roll-up process, until it  is 
dissipated by viscosity. Vertical shadowgraph observations do not reveal density 
distortions, which is in agreement with the limitation to horizontal motions a t  these 
low Fi experiments. 

3.2. Unsteady two-dimensional attached vortex (a,, A,) 
Beginning at Re x 70, time-dependent, horizontal distortions of the wake envelope 
begin to appear. These wave-like distortions originate near the separation line and 
propagate downstream to the trailing end of the envelope and collect at the trailing 
end; see figure 7. This characteristic flow is delineated as an ‘unsteady two- 
dimensional attached vortex ’ (symbols a,, A,, on figure 2). Very little, if any, 
vorticity is released to the downstream flow by these disturbances, although a 
regular, sinuous trail of particles is formed downstream. The disturbances have been 
observed to occur simultaneously on both sides of the envelope. They are also 
reasonably periodic, although no quantitative measurements of the periodicity were 
made. Taneda (1956), in his study of low-Reynolds-number flow past cylinders, 
referred to these distortions as ‘gathers’, and found their presence starting a t  
Re x 35 up to Re x 150, where the very distinctive vortex-shedding process was 
observed to commence. This regime is similar to the unsteady attached vortex regime 
for a right circular cylinder in a homogeneous fluid ; see, for example, the photographs 
in Batchelor (1967). Similar patterns were also observed by Boyer (1968) for flows in 
the lee of a right circular cylinder in the presence of background rotation. 

The dependence of the normalized bubble length, Ab/D (see figure 8 )  on the 
Reynolds number in the steady and unsteady two-dimensional attached vortex 
regimes was investigated by focusing on observed particle streak flow patterns in the 
( z  = 0)-plane (see figure 56) for the ASU experiments and reflective flake photographs 
(see figure 7)  for the UW experiments. Figure 8 is a plot of the observed Ab/D data 
against Re for the steady and unsteady two-dimensional vortex regimes. Given that 
Fi varies from 0.02 to 0.20, one notes a good collapse of the data, independent of F i .  
The scatter of the data increases with Re because of the increased difficulty of 
defining the bubble length for unsteady flows. Note that there is a systematic 
difference between the UW and ASU bubble-length measurements. This is attributed 
to the different flow-observation techniques employed. The ASU particle measure- 
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FIGURE 8. Normalized bubble length, AblD against Be for steady arid unsteady two-dimensional 
attached vortex regimes; ---, homogeneous flow past a long circular cylinder (Churchill 1988) ; 
-.- , homogeneous flow past a sphere from Taneda ( 1956). , UW experiments ; 0, ASU studies. 

ments of AblD were larger because the critical streamlines identified were those 
that circumscribed the bubble region. The larger uncertainty bands for the U W  data 
are due to the instantaneous photographic observations of bubble size, which were 
then averaged over multiple photographs. 

The experimental relation for AblD against Re for a sphere in a homogeneous fluid, 
as obtained by Taneda (1956) and that for a two-dimensional cylinder in a 
homogeneous flow, are also plotted on figure 8. Because stratification inhibits flow 
over the sphere tending, as discussed above, to a more two-dimensional motion, the 
separation bubble is larger a t  a given l i e  for the stratificd as compared to the 
homogeneous case; the bubble length. however, is less than that for a right circular 
cylinder. The bubble length is independcnt of Fi because the stratification is strong 
enough in all experiments in these regimes to inhibit vertical motion, thus making 
the normalized bubble size depend primarily on Re. 

For the sphere, the data indicate an approximately linear increase of normalized 
bubble length AblD with Re. This dependence can be predicted from scaling 
arguments. Consider the x-momentum and conservation of mass equations in the 
vicinity of the ( z  = 0)-plane. Neglecting vertical motions and variations with z,  one 
can write 

au av -+- = 0, 
ax ay (3.2) 



Strati$ed flow past a sphere 

180 

160 

140 

OH 

120 

100 

80 

329 

- 

- 

- 

- 

- 

I 1 1 1 1  I I I I 1 l l l l  1 1  

10 100 

respectively, where (u, v) are the velocity components along (z, y). Assume that in the 
bubble region u N U ,  Ax N Ab and Ay - D. Equation (3.2) then yields v - UDlAb. If 
one then hypothesizes that inertia balances transverse viscous diffusion in (3. l ) ,  one 
finds 

- N - =  uD Re. 
D v  (3.3) 

The results of figure 8 support this scaling argument. At Re 2 100 for this regime, the 
bubble region becomes increasingly unsteady and one is beginning to  enter another 
flow regime. 

Additional observables of interest in the steady and unsteady attached vortex 
regimes are the separation angles as observed in the vertical and horizontal planes 
and as represented by the greatest extent of separation in each of these observation 
planes. The separation angle is defined as the angle from the upstream centreline to 
the separation point. For the horizontal plane, the maximum separation angle 
always occurs on the equatorial plane, independent of the flow regime. The linear 
stratification field, together with the axisymmetry of the sphere, would suggest 
symmetry of this type. 

If flow regimes are confined to those below the lee-wave instability regime (i.e. 
Fi 5 0.2 as discussed below), the influence of the internal wave field is diminished and 
the flow is predominantly horizontal. For these regimes, the measured horizontal 
separation angles a t  the equator are shown in figure 9 as a function of Re. Owing to  
the dominance of stratification, these separation angles are independent of Fi 
throughout this range of parameter space. For comparison, the separation angles for 
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(a) 

FIGURE 10. Two-dimensional vortex shedding (v~, V,) ; (a) dye tracer along horizontal centreplane, 
z = 0; Re = 180, Fi = 0.05, D / H  = 0.23; ( b )  particle streaks along z = 0;  Re = 200, Pi = 0.09, 
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the homogeneous flow past spheres and cylinders are also shown. This maximum 
separation angle closely follows the separation angle behaviour of the flow past a 
cylinder in a homogeneous flow. The observed two-dimensional, vertically coherent 
nature of the flow would suggest this type of behaviour. Additionally, the 
experimental value of Re for incipient separation (i.e. N 6) follows the cylinder’s 
incipient separation value (Re N 6.2). Data on the dependence on horizontal ( z  = 0 
plane) and vertical (y = 0 plane) separation angles as a function of Fi and Re will be 
given in figures 31 and 32, respectively. 

3.3. Two-dimensional vortex shedding (v~ ,  V,) 
For Re 2 120 and Fi 5 0.15 (see figure 2)) vortices of characteristic thickness 2H, and 
approximately two-dimensional over the range - H, 5 z 5 H ,  are shed alternately 
from the sphere ; this flow regime is termed ‘ two-dimensional vortex shedding ’ 
(symbols vt,V, on figure 2) and is exemplified by the dye tracer photograph in the 
( z  = 0)-plane and particle streak photographs in the ( z  = 0)- and (y = 0)-planes, in 
figures 10 (a)-10 (c), respectively. Figures 10 (a) and 10 ( b )  show clearly the alternate 
shedding of eddies with vertically oriented vorticity ; these experiments are at 
approximately the same Pi,  Re. Furthermore, the shedding phase is approximately 
the same in both photographs. The sphere diameter in both experiments is the same, 
but in the interest of showing more of the far wake, the field of view in figure lO(a) 
has been expanded. The dye tracer photograph shows a classical vortex street 
signature. Note, however, from the particle streak photograph that only the near 
wake vortices are very active, while the far wake vortices are dominated by the mean 
flow. 

The vertical particle streak photograph of figure 1O(c) shows clearly that the 
vertical motions in this regime, again owing to the small Fi and relatively small Re, 
are weak. The normalized dividing streamline height is H,* x 0.82 and again it is 
noted that only weak vertical motions are in evidence upstream of the sphere. The 
question then arises as to the vertical dependence of the horizontal streamline 
patterns and in particular the frequency of the eddy shedding since the ‘local 
obstacle diameter ’ varies with height. To answer this question, a series of experiments 
were conducted in which a dye tracer was released along the full surface of the sphere. 
Figure 10 ( d  ) is a schematic representation of the qualitative nature of the character 
of the vortex-shedding structure as obtained from these experiments. Figures 10 ( e )  
and l O ( f )  are photographs of the dye tracer patterns observed from vertical 
streamwise oriented light-sheets along the sphere centreplane (y = 0) and along the 
sphere tangent-plane (y = -A@). These photographs show clearly that the vortex 
shedding is vertically coherent. 

The Strouhal number St = w , D / U ,  where o, is the eddy-shedding frequency from 
one side of the sphere, was measured by hot-film anemometry and by using dye- 
tracer flow observations. Figure 11 is a plot of St against Re for all of the experiments 
conducted in this regime; the Froude number varied in the range 0.03 5 Fi 5 0.28 
(which extends beyond the present flow regime). The results show clearly that the 
Strouhal number St is independent of both Fi and Re with St x 0.20. Also plotted are 
the cylinder (Roshko 1953) and sphere (Achenbach 1974) results for homogeneous 
flow ; note that our findings closely follow those for the cylinder. 

D / H  = 0.23; ( e )  same as ( b )  except view is for vertical centreplane; ( d )  schematic diagram of three- 
dimensional nature of vortex shedding phenomena; and (e), (f) photographs of dye tracers released 
from full sphere as made visible in planes along y = 0 and y = -A$, respectively. The parameter 
values for (e) and (f) are Re = 180, Fi = 0.06 and D / H  = 0.21. 
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FIGURE 12. Comparison of regime diagram observat,ions for two-dimensional vortex shedding 

between Brighton’s (1978) results fbr a hemisphere and the present experiments. 

Brighton (1978) reported similar phenomena for a hemisphere mounted on the 
lower horizontal plane surface of his stratified water tunnel ; i.e. he indicated that 
vortex shedding occurred a t  Reynolds numbcrs in the range 400 5 Re 5 700, 
depending on the internal Froude number. These Reynolds numbers were based on 
his free-stream flow with the hemisphere being embedded in a bottom boundary 
layer of thickness not significantly lcss than thc hcmisphere radius. These bottom 
boundary layers lead to a significantly different now upstream of the obstacle and 
explain the rather large differences in Reynolds numbers a t  which thesc regimes are 
observed in the two experiments. The difTerences in the Fi, Re regions of parameter 
space between Brighton’s (1978) observations of two-dimensional vortex shedding 
and those found herein are delineatcd on figure 12. 

Hanazaki‘s (1988) smallest Pi calculation was at  Fi = 0.125 (his Froude number 
0.25) and Re = 200, as denoted by a triangle on figure 2. The present laboratory 
experiments demonstrate that, under these conditions, two-dimensional vortex 
shedding occurs. Hanazaki’s calculation led to a steady solution, however, in which 
a large recirculating eddy structure of characteristic streamwise dimension x 40 was 
found in the lee of the sphere. Referring to figure 8, our results show that when the 
lee bubble length reaches about 2 0 ,  unsteadiness in the wake begins to appear. 
Possibly, Hanazaki’s downstream boundary condition of d u / b  = 0 at  the outflow 
boundary precluded vortex shedding. 
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FIGURE 13. Transition flow from two-dimensional vortex shedding (vt, V,) to lee-wave instability 
( I ,  L) ; (a) reflective flake photograph in (z = 0)-plane; ( b )  sIpd‘ocgraph in (y = 0)-plane; Re = 380, 
Fi = 0.18, D / H  = 0.19. The arrow indicates the rotor location. 

3.4. Lee-wave instability (8, L) 
As the Froude number is increased a t  fixed Re, lee waves in the vicinity of the 
streamwise vertical centreplane y = 0 become increasingly evident. The transition to 
the higher Fi regime, termed lee-wave instability from the two-dimensional vortex- 
shedding regime is a gradual one. In  this transition region the first lee-wave crest 
appears to  be unstable but vortex shedding in the neighbourhood of the streamwise 
centreplane continues to higher Fi (as was noted in the measurements of St in the 
previous section). Such a transition flow is exemplified by the reflecting flake and 
shadowgraph photographs of figures 13 ( a )  and 13 ( b ) ,  respcctively. 

I n  the Froude number band 0.2 5 Fi 5 0.4, the width being somewhat dependent 
on Re, and for the range of Reynolds numbers considered, 60 5 Re 5 1500 (see figure 
2), the first lee-wave crest was found to  be unstable, exhibiting overturning motions. 
Figure 14 contains particle path and shadowgraph photographs depicting typical 
flow patterns for this regime termed, ‘lee-wave instability’ (symbols 8 ,  L on figure 2). 
I n  addition to overturning motions this regipe is also characterized by (i) a 
steepening of the vertical density gradient along the top and bottom of the 
separation envelope boundary and (ii) a narrowing of the separation line on the 
sphere; these features can be noted on the shadowgraph of figure 14(c). This is the 
same regime termed ‘cow-horn eddies’ or ‘rotors’ by Brighton (1978). Fluid particles 
above the dividing streamline and in the vicinity of y = 0 rise over the top of the 
sphere and descend into a deep trough on the downstream side. Owing to the strong 
vertical shear in the vicinity of the first lee-wave crest, overturning takes place as is 
clearly evident in figures 14(b) and 14(c). 

The vorticity equation can be written as 

wp wp+ V V 2 0 ,  
Dm 
- = (o.V)u+ 
Dt P2 

(3 .4)  

where o = V x v is the vorticity, D/Ut  is the substantial derivative and u is the 



334 Q .  Lin, W. R.  Lindberg, D .  L .  Boyer and H .  J .  8. Fernando 

(4 

FIGURE 14. Lee-wave instability (8 ,  L) ; (a), (b)  particle streak photographs in ( z  = 0) -  and (y = 0)- 
planes, respectively; Re = 500, Fi = 0.19, DIH = 0.23; (c) shadowgraph for Re = 700, Fi = 0.26, 
D / H  = 0.23. 

velocity. From (3.4) one notes that baroclinic effects are important in the generation 
of vorticity and, in the present context, play a role in the phenomenon of lee-wave 
instability. The baroclinic vorticity production term (Vp x Vp)/p’ in the vicinity of 
y = 0 under the Boussinesq approximation becomes 

On the upstream side of the lee-wave crest, applax > 0, showing that the baroclinic 
effect tends to form an overturning motion. 

Figures 15 ( a )  and 15 ( b )  are density profiles taken through the first lee-wave crest 
region in the vicinity of y = 0 for two different Fi, Re combinations. These profiles 
delineate clearly the locations of the edges of the overturning regions, showing that 
the density profile is statically unstable. These so-called rotor regions lead to patches 
of small-scale turbulence ; see figure 14 ( c ) .  

The horizontal centreplane particle streak photograph of figure 14 ( a )  shows that 
the wake pattern at  this level contains a two-dimensional vortex pair with the flow 
near the streamwise centreline being advected back toward the sphere. This two- 
dimensional flow in the centreplane was found to be unsteady far downstream, as 
can be noted on figure 14(a). 

In the lee-wave instability flow regime, fluid parcels approaching the sphere at 
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FIGURE 16. Eormalized height of lee-wave crest against y / D  (lateral position) ; Re = 520, 
Fi = 0.16, D/H = 0.24. 

elevations IzI 2 H,*, in the vicinity of y = 0 say, had sufficient kinetic energy to go 
over (or under) the sphere; note that H ,  x 0.6 for the experiments of figure 14, in 
approximate agreement with Sheppard's formula (1.2). After reaching the crest, 
buoyancy effects increase the downflow behind the crest, which tends to delay flow 
separation in a vertical cross-section along y = 0; see figure 14(b). The lee waves die 
out further downstream owing to viscous dissipation and radiative effects. 

For fluid parcels approaching the sphere at  IzI c H,, there was a tendency for 
motion in horizontal planes at  the parcel's upstream flow level. The adverse pressure 
gradient experienced by fluid particles in the immediate lee of the sphere caused flow 
separation in horizontal planes as indicated for the (z  = 0)-plane in figure 14 (a). The 
flow in the region IzI 6 H ,  is thus approximately two-dimensional with the lee-side 
separated wake region being a vertically deformed separation bubble. 

Detailed observations of experiments in this regime indicated that the lateral 
extent of the overturning region was less than that of the sphere diameter. 
Traversing conductivity probe measurements such as given in figures 15 (a )  and 15 ( b )  
were used to obtain measures of the height of the rotor regions. Figure 16 is a plot 
of the normalized height of the lee-wave crest, zJD,  against y/D for Re = 520, 
F i  = 0.16, D / H  = 0.23. Note the decrease in thickness with y/D, with no rotor 
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FIGURE 17. Kormalized lee wavelength against F i ;  ---, linear theory of Crapper (1959); -.-, 
Hanazaki’s (1988) calculations ; solid symbols from LTW rxprimerits and open symbols from ASU 
studies. 

appearing for y / D  2 0.4. Thc rectangular-shaped lee-wave instability region, 
reported by Sysoeva & Chaschcchkin (1988). was not observed in the present studies. 

The linear theory of Crapper (1959), predicts that thc normalized lee wavelength 
h / D  is a linear function of F i  and is given by (1.3) for the vertical centreplane; i.e. 
along y = 0. Lee wavelengths were measured from both particle streak photographs 
and shadowgraphs. Measurements werc made of the distance between the first and 
second crests a t  the approximate elevation of z = $!I. The results are plotted in figure 
17. The measurement error of h / D  is relativclly higher a t  lower F i  because the 
wavelength is small compared with the sphere diameter. The results indicate clearly 
that the measured wavclengths are systematically smaller than that predicted by 
linear theory. Similar results have been found by Chomaz et al. (1990). 

Hanazaki (1988) provided numerical results for experiments at Re = 200 and 
Pi = 0.25,0.35 (his figures 3 ( e )  and 3 ( d ) ,  respectively) which should both lie within 
the Ice-wave instability regime. Gcncrally, there is good qualitative agreement 
between the flow patterns found by Hanazaki and those observed in the current 
experiments. This includes such observables as the general nature of the flow field 
including in particular the motion in the horizontal and vertical centreplanes. His 
results for the prediction of the normalized lee wavelengths as indicated on figure 17 
are in good agreement with our observations. One feature not predicted by the 
Hanazaki numerical experiments are the rotor regions which are clearly evident in 
the physical experiments. 

With increasing F i ,  the lee waves increase in amplitude, and both the vertical and 
horizontal separation angles tend toward the aft centreline with, as a limiting case, 
little or no separation in the vertical; i.e. see figure 18. The limiting case defines lee- 
wave resonance. Similar flow patterns were reported by Honji (1987) ; e.g. see his 
figure 1 (b) .  Inhibition of separation accompanies reduced pressure and so must occur 
in both horizontal and vertical planes, with convergence of constant density surfaces 
immediately behind the sphere. The horizontal dimension of the separation region 
also decreases with decreasing Re. The very narrow separation envelope is connected 
to one or more bulges directly downstream. The interior of these bulges is strongly 
vortical and structured. The size of thesc bulges can vary from almost unobservable 
to close to the same size as the object. 
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FIGURE 18. Transitional flow between lee wave instability (f, L) and non-axisymmetric attached 
vortex in (n, N )  regimes; Re = 859, Fi = 0.43 and D / H  = 0.13; (a) reflective flake photographs 
along horizontal centreplane, z = 0 ; ( b )  reflective flake photograph along vertical centreplane, 
y = 0; ( c )  side-view shadowgraph; and ( d )  interpretive sketch. The closed directed line on ( d )  
represents the vorticity within the isolated structure. 

The very narrow region in Fi where this resonance is observed to occur would 
suggest that  this characteristic motion represents the transition between the two 
adjacent regimes. The value of Fi of this transitional flow is approximately 0.4, 
which is consistent with the arguments of Lofquist & Purtell (1984), where their 
energy arguments led to an estimate for Fi of 0.35 at this interval wave resonance 
point. Their argument is an inviscid one, which is justified by examining the flow- 
regime diagram, where this transitional flow is independent of Re. 

3.5. Non-axisymmetric attached vortex (n, N ) 
For certain ranges of Re for homogeneous flow past a sphere, an axisymmetric vortex 
is attached to the lee side of the obstacle. Buoyancy effects modify this general flow 
regime for the stratified case. For Fi 2 0.4 and for a range of Reynolds numbers, as 
indicated on figure 2, the flow is characterized by a double wake structure, which is 
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FIQURE 19. Non-axisymmetric attached vortex (n, N )  ; Re = 480, Fi = 0.68, D / H  = 0.15; (a) dye- 
tracer photograph along horizontal centreplane, z = 0; ( b )  particle streak photograph along z = 0 ;  
(c) particle streak photograph along vertical centreplane, y = 0. 

termed a ‘non-axisymmetric attached vortex’ (symbols n, N on figure 2 ) .  Figures 
19(a) and 19(b) are dye tracer and particle streak photographs, respectively, for the 
horizontal plane of symmetry x = 0, while figure 19 ( c )  is a particle streak photograph 
for the vertical symmetry plane y = 0 to exemplify this regime. 

Owing to  the relatively larger internal Froude numbers for the experiments in 
figure 19, the measured dividing streamline height was H ,  x 0.25; it appears that 
Sheppard’s formula (1.2) is not valid a t  such large Fi .  Thus, fluid parcels from 
relatively small IzI have sufficient energy to pass over the sphere. This can be 
observed in figure 19(c) .  As seen in figure 19(c) ,  a lee-wave pattern is in evidence far 
downstream of the sphere. 

Figures 20 (a) and 20 ( b )  provide three-dimensional interpretive sketches of the 
attached vortical regions in the lee of the sphere. Conceptually, it may be clearer to 
examine this regime as Fi decreases towards Fi x 0.4. For weak stratification, the 
doughnut-shaped vortex ring is deformed in the vertical due to  stratification ; see 
figure 20 (a). As the stratification increases the deformation increases, until at 
sufficiently large stratification, the deformed doughnut-shaped vortex is doubly 
reconnected, leaving two attached vortices, as in figure 20(b) .  As Pi is decreased 
below Fi x 0.4, the double wake structure disappears, and the attached eddies near 
z = 0 are elongated in the manner described for the lee-wave instability regime. 

Figure 19 ( b )  shows the presence of a horizontal bulge-like shape from one to three 
diameters downstream of the sphere. This region consists of fluid which is not part 
of the attached wake elements which are seen in figure 19(a). A schematic diagram 
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FIGURE 20. Interpretive sketches of the non-axisymmetric attached vortex for (a) weak 
stratification and (b) strong stratification. An interpretive sketch of the formation of the bulge-like 
particle streak pattern in the lee in the vicinity of the (z = 0)-plane is given in (c) ; see figure 19 (b) 
and text. 

showing how such bulge-like patterns near z = 0 are formed is given in figure 20 (c). 
This figure depicts three neighbouring streamlines which pass over the sphere near 
z = and y = - 6,0 and 6, where 6 < D. Fluid parcels pass over the sphere and 
attached lee-wave vortices (see figure 20a, b) and diverge horizontally on 
approaching the plane z = 0. They then rise again in the lee of the bulge. Note that 
the qualitative nature of the velocity components near A and B are indicated on the 
diagram. 

A physical picture of the processes which contribute to the formation of non- 
axisymmetric attached vortices is presented below. We shall apply the concepts of 
surface topology, surface stress vectors, surface nodes and saddle points as discussed 
by Lighthill (1963) and Hunt et al. (1978). Briefly, the approach begins with the 
concept of surface stress (more precisely: strain rate) vectors, E,, in near-surface 
flows. 

Very near the surface of an object, the velocity may be modelled by 

u = E ,  Ell, (3.6) 

(3.7) 
70  

P 
where E ,  = w, x n = -, 
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FIGURE 21. Topological patterns of surface stress lines, in the lee of the sphere, for the flow regimes 
leading to non-axisymmetric vortex flows. (a) Lee wave instability (Fi < 0.4), n, = 4, n, = 2;  ( b )  
limiting case for lee wave instability (Fi 0.4), n, = 2, n, = 0;  (c) transition flow between lee-wave 
instability and non-axisymmetric vortex flows, n, = 4, n, = 2;  ( d )  incipient double node separation, 
n, = 3, n, = 1 ; ( e )  higher Fi flow, n, = 5, n, = 3. 
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(, is the outward surface normal coordinate, w, the surface vorticity, n the outward 
unit normal, 70 the surface stress vector and p the viscosity. In this surface region, 
streamlines and surface stress lines are approximately aligned and the vortex lines 
are orthogonal to the surface stress. 

At  the edge of the viscous layer of thickness 6, the vorticity may be kinematically 
related to the velocity in this region as: 

where Uo is the velocity at  the edge of the viscous layer. The vortex lines, whose 
strength is the average vorticity across the boundary layer, are then orthogonal to 
the surface streamlines. The average convection velocity of boundary-layer vorticity 
is 

(3.9) 

As has been discussed by Lighthill (1963), flows with mean velocity gradients in 
planes parallel to the surface cannot simultaneously satisfy relations (3.8) and (3.9) 
without the presence of positive surface streamwise vorticity. In regions of lower 
free-stream velocity, the surface vortex lines must therefore have a streamwise 
component, in order for the mean layer vortex lines to remain approximately 
orthogonal to the surface streamlines. 

The basic characteristics of the surface stress lines, viewed from downstream, for 
thc transition to non-axisymmetric wakes from the lee-wave instability regime, for 
increasing Fi, are sketched in figure 21. These patterns are reflective of the 
cxperimental observations of each of these flows. In each of the five cases shown 

(3.10) 

where n, is the number of surface nodes and n, is the number of saddles on the surface 
(the Poincar6-Bendixson theorem). The forward surface flow patterns are not 
shown in the figures. These forward regions will either possess one stagnation node 
or two stagnation nodes and one saddle point. (In either case, on the forward half, 
2 n, -xns = 1.) The basis for these patterns can be described as follows. 

The fundamental premise in examining the formation of non-axisymmetric 
attached vortices is the separation criterion based on zero surface vorticity. 
Kinematically, the existence of zero surface vorticity would require the presence of 
one or more separation nodes on the surface of the sphere. 

The flow calculations of Hanazaki for the distribution of isopycnals adjacent to the 
surface are particularly useful at this point. Hanazaki did not report the presence of 
the non-axisymmetric vortex flows, but we will take his isopycnal distributions to be 
indicative of the external wave field which exists prior to the separation process 
being discussed. It is assumed that the isopycnals are approximately representative 
of streamlines adjacent to the surface. The mean vorticity lines are thus 
approximately orthogonal to these isopycnals. For Hanazaki's case of Pi = 0.35 (his 
Froude number 0.7) the result is shown in figure 22(a, b ) .  The convergence of the 
streamlines in the aft region of the equatorial plane indicates the higher velocities in 
that region compared to the velocities of the fluid which passes over (under) the 
sphere in the neighbourhood of y = 0. Owing to the need for positive streamwise 
layer vorticity in regions of lower external velocities, the surface vorticity is distorted 
in the vertical (in comparison to the mean vorticity), as is shown in figure 22(c). 
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Within the boundary layer, there are density gradients, particularly if the 
stratification is due to a low diffusivity scalar. This stratification within the 
boundary layer causes a diminishment of vorticity within the boundary layer itself, 
owing to baroclinicity, which must be adjusted for by a further increase in 
streamwise surface vorticity. The argument is briefly as follows, where we start with 
the general vorticity equation, under the Boussinesq approximation. With reference 
to figure 22, the y-component of vorticity, from (3.4) and (3 .5))  may be written as - DU = (m-V)Uu+vV2Uy+--.  9 aP 

Dt Po ax 
(3.11) 

As was discussed in the context of lee-wave instability, applax < 0 on the aft of the 
sphere and above the horizontal centreplane, owing to the isopycnal distortion in this 
region. This baroclinic term serves as an additional sink for vorticity (since wy > 0). 
(A similar argument for the lower half of the sphere indicates that wy < 0 and 
+/ax > 0.) This deficit in vorticity must be compensated for by additional 
streamwise surface vorticity, which further distorts the central region of surface 
vortex lines, as is shown in figure 22.  

The tendency of the surface vorticity lines to merge together in the central aft 
portion of the sphere is seen to create off-axis separation points on the equatorial 
plane as surface stress lines bifurcate, creating two nodal points and a central saddle 
point, as was illustrated in figures 21 (b)-21 ( d )  (through the sequence just described). 
This progression to the non-axisymmetric attached vortex regime may possibly 
proceed without baroclinicity, and be caused exclusively by the external wave field. 
A scaling of the convective and diffusive terms in the vorticity equation, however, 
indicates that the baroclinic term (if scaled by P )  is quite comparable and should not 
be neglected. 

With increasing Pi, the wake regions adjacent to the surface become larger and 
eventually merge into a single deformed vortex ring structure, as was shown in figure 
20(a) .  At the larger Re boundaries of this regime, the wake becomes unsteady, and 
for sufficiently large Re, Fi the attached vortices begin to shed from the sides of the 
sphere. 

3.6. Symmetric vortex shedding (s ,  S )  
When the combination of Fi,Re is large enough (see figure 2), periodic vortex 
shedding is observed. The resulting flow patterns when viewed in either horizontal or 
vertical projections are symmetric and thus the term ‘symmetric vortex shedding ’ 
(symbols s, S in figure 2 )  is used to describe this characteristic regime. Figure 23(a)  
is a vertically oriented shadowgraph and figure 23(b) a horizontal dye tracer 
photograph exemplifying this flow regime. Interpretive sketches of the wake flow 
corresponding to figures 23(a)  and 23(b) are given in figures 24(a)  and 24(b) 
respectively, 

This regime has some similarities to the horse-shoe loop phenomenon discussed for 
the homogeneous case by Achenbach (1974). For homogeneous fluids the vortex loop 
shed from the sphere has no preferred direction with the separation point being a 
function of time. For the stratified case, however, vertical stability gives the 
phenomenon of the shedding of vortex loops a preferred direction ; i.e. the geometric 
characteristics of each successive loop in the periodic process are similar on both 
sides. 

Viewed in a vertical cross-section, the doughnut-shaped or split vortex structures 
as sketched in figures 20(a) and 20(b) respectively, shed from the sphere, grow 
slightly in the near wake, before collapsing in the far wake owing to stratification 
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- Y  

FIGURE 22. Sketches of general near-surface flow patterns and inferred vortex lines for Pi x 0.35, 
prior to formation of the double node separation points (similar to figure 21b). (a) Side view 
of ---, mean layer vortex lines, and -, streamlines at the edge of the viscous layer adjacent 
to the sphere. The streamlines are taken to correspond to the isopycnals of Hanazaki (1988), for 
Fi = 0.35. The streamlines within the fluid are for the (y = 0)-plane. The mean surface vortex lines 
are drawn orthogonal to the surface streamlines (equation (3.8)). (b) Aft view of the same 
parameters as (a); (c) aft view of -, the surface stress lines, and ---, surface vortex lines, 
showing the vertical distortion of the surface vortex line, as discussed in the text. 

effects ; see figures 23 (a) and 24 (a). The vortex loops, as viewed in a horizontal plane, 
shed in a symmetric fashion and gradually wrap-up becoming a single structure in 
the far wake following collapse. After collapse the structures merge and form a quasi 
two-dimensional alternating vortex street in the distant wake (not shown in figures 
23 and 24). 

The vortices on each side of the sphere, in this regime, can shed at slightly different 
times causing small asymmetries in the wake pattern. The flow regime is stable, 
however, in the sense that these asymmetries do not grow in the streamwise 
direction. The lifetime of the vortices generally increases with increasing Fi because 
at decreasing stratification levels, vortex collapse is delayed ; owing to viscous effects 
by vertical shear, collapsed vortices decay more rapidly. In addition, a t  higher Fi, 
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(a) 

FIGURE 23. Symmetric vortex shedding (s, S) ; (a) side-view shadowgraph at Re = 1120, Fi = 0.94, 
D / H  = 0.15; (b) dye-tracer photograph along horizontal plane of symmetry at Re = 870, Fi = 0.86, 
D/H = 0.17. 

Collapsed 

FIGURE 24. 

U + 

Interpretive sketch of vortex loops in the symmetric vortex shedding 
(a) side view and (b) top view. 

regime ; 

the vertical distortion of the doughnut-shaped vortex ring is relatively smaller and 
the suppression of the vertical scale is weak, thus leading to relatively taller vortices 
a t  higher F i ;  see figure 28. 

The horizontal vorticity in the shed vortex ‘rings’ tends to advect lighter fluid 
downward towards the streamwise centreline from above and heavier fluid upward 
from below. This tends to leave a region of strong vertical density gradient variation 
along the streamwise centreline as is evidenced by the dark (and bright) lines 
between successive vortex loops as indicated in figure 23 (a). The shedding frequency 
of the vortex loops, in particular the Strouhal number, was measured for a range of 
Re, Fi and these data are discussed below. 
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FIGURE 25. Non-symmetric vortex shedding (V) ; (a) side-view shadowgraph at Re = 1550, 
Fi = 1.25, D/H = 0.17; ( b )  dye-tracer photograph along the horizontal plane of symmetry for 
Re = 1360, Fi = 1.38, DfH = 0.1’7. 

3.7. Non-symmetric vortex shedding (V) 
As the Re, Fi combinations continue to increase, the wake becomes increasingly 
unstable and the vortex shedding gradually loses its symmetry. The vortices become 
highly three-dimensional with quasi-periodic shedding apparent in the horizontal 
centreplane z = 0. Figure 25 (a )  and 25 ( b )  are, respectively, a vertical shadowgraph 
and horizontal dye tracer photograph ( x  = 0 plane) illustrating this flow regime 
which is designated as ‘non-symmetric vortex shedding’ (symbol V on figure 2 ) .  Note 
that the horizontal view demonstrates the quasi-periodic nature of the phenomenon 
but that this periodicity is not clearly evident in the vertical shadowgraph, where the 
wake oscillates, splits into small vortices and then collapses. 

The near wake of the flow in this regime apparently consists of a low-level, 
turbulent attached bubble region. The periodic behaviour of the middle wake 
originates near the downstream portion of this attached bubble. The far wake is 
characterized by a thin collapsed turbulent region; see figure 25(a).  The large 
difference in magnitude of the vertical and horizontal scales of the wake, as indicated 
in figures 25(a) and 25(b) respectively, are general characteristics of wakes in 
stratified flows ; i.e. the vertical scale collapses and the horizontal one expands. This 
characteristic is enhanced as Pi is decreased. 

At  the largest Pi experiments in this regime, the shed vortex loops are similar to 
the horseshoe vortices described by Achenbach (1974). Achenbach reported that 
vortex loops begin to shed at  Re = 400. The current observations indicate that 
vortex loop shedding begins at Re = 380 at high Pi (i.e. Pi = 10). Thus there is good 
agreement with Achenbach’s results. Note from figure 2 that stratification tends to 
suppress vortex shedding; i.e. larger Re are required for shedding as Pi is decreased. 

Measurements of the Strouhal number St = we DIU for a wide range of Pi,  Re were 
made in the symmetric and non-symmetric vortex shedding regimes; here we is the 
shedding frequency from one side of the sphere. The shedding frequencies were 
determined from video tapes of experiments in which dye tracers and shadowgraphs 
were employed and from density records obtained from conductivity probes fixed in 
the wake. 
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FIQURE 26. Strouhal against Reynolds number for 0 ,  the symmetric and n, non-symmetric 

flow regimes; -.- , Achenbach (1974) for a sphere in a homogeneous flow. 
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Figure 26 is a plot of St against Re for both the symmetric and non-symmetric 
vortex-shedding flow regimes. The results of Achenbach (1974) for a homogeneous 
fluid are also shown. Note that there is no strong distinction between the shedding 
frequencies of the two regimes. The stratified experiments have the same general 
trend of increasing St with Re as homogeneous flows. The observed variability of St 
for fixed Re, however, suggests the possibility of F i  effects. The data from figure 26 
were also plotted as a St against F i  graph as shown in figure 27. The symbols in figure 
27 represent various ranges of Re. This plot shows that there is a general decrease in 
St with an increase in Fi for each range of Re. 

Shedding frequencies for higher Reynolds numbers were determined exclusively 
by conductivity probe measurements along the streamwise centreline at a distance 
3 0  downstream of the sphere. For Re 2 2000, and for sufficiently large Fi, the higher 
frequency signal of the dominant mode had diminished to the point of being 
indistinguishable from the rest of the signal. 

The normalized vertical height of the vortex structure S J D  in the symmetric and 
non-symmetric shedding regimes were measured using side-view shadowgraphs ; here 
13, is the maximum vertical extent of the vortex structures. Measurements were made 
from a sequence of photographs prior to collapse and these are plotted against Pi in 
figure 28. The data suggest that S,/D - Fit. 
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FIGURE 28. Normalized maximum vertical size of vortex structures for symmetric and non- 
symmetric vortex shedding regimes, SJD against Pi. 

FIQURE 29. Turbulent wake (T) ; (a) top-view shadowgraph at Re = 5100, Fi = 1.70, D/H = 0.23; 
(b)  side-view shadowgraph at Re = 3810, Fi = 2.60, D/H = 0.17 ; (c) particle-streak photograph for 
Re = 4650, Fi = 4.10, D/H = 0.17. 

3.8. Fully-turbulent wake (T) 
For sufficiently large Fi,Re combinations the wake appears to be fully turbulent, 
characterized by small-scale mixing; see figure 2. Figure 29 shows (a) a horizontal 
shadowgraph, (b) a vertical shadowgraph and (c) a y = 0 particle streak photograph 
exemplifying this flow regime termed ' fully-turbulent wake ' (symbol T on figure 2). 

12 FLM 240 
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FIQURE 30. Normalized dividing streamline height against Pi. 

As one notes from the shadowgraphs, fine-scale turbulence permeates the wake. For 
the lowest Fi experiments in this regime, the vertical scale of the turbulent wake is 
suppressed by stratification in the immediate lee of the sphere. For higher Fi (see 
figure 29c), the wake grows initially and then collapses in a manner similar to  that 
reported by Lin & Pao (1979). Figure 29 (a)  demonstrates the horizontal growth of 
the wake owing to  horizontal entrainment, and wake collapse due to stratification 
effects. Note that the horizontal shadowgraph is not as sharp, especially near the 
wake boundary, as its vertical counterpart. This is due to the fact that the second 
derivative of the density is much stronger in the vertical direction near the wake 
boundary compared to the horizontal direction. 

3.9. The dividing streamline height 
In  the past, a number of experimental studies were done t o  verify Sheppard’s 
formula (1.2). In  order to determine the limits of applicability of (1.2), a series of 
experiments using the particle-streak technique was conducted as part of the present 
study. The particle-streak photographs were taken at the vertical centreplane with 
a relatively long time exposure to  make the dividing streamline readily measurable. 
The results for H,* are plotted against Fi on figure 30, together with the calculated 
results of Hanazaki (1988). The agreement with Sheppard’s formula is good for 
Pi 5 0.4. The slope of the data indicates that 01 x 1 in Drazin’s formula (1 .1) .  

3.10. General separation angle behaviour 
One parameter that  could be observed over the entire experimental Fi, Re parameter 
space was the horizontal separation angle, OH. By itself, this parameter does not 
reveal much information on the physical processes involved in these flows. However, 
a direct comparison of OH with the flow regime map of figure 2 may be made, and is 
shown in figure 31. The correspondence between the regime boundaries and the 
contour lines of constant angle is generally quite good. The independence of OH on Fi 
for the steady and unsteady two-dimensional attached vortices regimes is apparent 
in figure 31. For the lee-wave instability regime the separation angle is noted to be 
approximately independent of Re. The more limited vertical separation angle (0,) 
data is shown in figure 32, where the axes are identical to figure 31. The narrow 
vertical extent of the wake, when compared to OH, is apparent throughout the 
observed parameter ranges. 
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FIGURE 31. Horizontal separation angle, OH, as a function of Fi and Re, as shown by a contour 
map; the regime diagram of figure 2 is superimposed. 
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Vertical separation angle, O,, as a function of Fi and Re, as shown 
map ; the regime diagram of figure 2 is superimposed. 

by a contour 

4. Concluding remarks 
Experiments on linearly stratified flow past a sphere have been conducted for the 

parameter ranges given by 0.005 < Fi < 15, 5 < R e  < 10000. Eight distinct flow 
patterns have been described, and these regimes have been located on an Fi,Re 

12-2 
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regime diagram. Descriptions and physical interpretations of each flow have been 
given. Where possible, comparisons with other reported observations are made. 
Specific conclusions include : 

(i) Fully attached, unseparated flows were not observed, down to Re x 6. 
(ii) For Pi 6 0.2, the flow is constrained to  horizontal planes, with strong vertical 

coherence and vortical wake structure, the horizontal centreline structure of 
which resembles homogeneous flow past long cylinders. 

(iii) When the internal wave structure is near its resonance (relative to the size of 
the sphere), overturning rotors are observed for Pi x 0.2-0.4. The resonant 
wave structure has been observed to  effectively suppress separation on the 
sphere at  the larger values of Pi. 

(iv) Flows with Pi x 0.4 represent the transition from flows which are dominated 
by internal wave motion to flows where wave motion, stratification and 
viscous effects are all equally important. Kinematic and topological 
arguments are used to  explain this transition process. 

(v) Further increases in Fi-Re yield wake flows which become increasingly 
unsteady, first in a very ordered, symmetric way and subsequently in a less 
symmetric and periodic way, until the wake flow undergoes a transition to 
turbulence a t  Re x 2000, for sufficiently large Pi. 

(vi) Owing to the inhibition of vertical modes, wakes in stratified flows have 
substantially larger horizontal scales than vertical ones. 

Comparisons with the numerical model of Hanazaki (1988) indicate that many 
features of the flow are well reproduced by his calculations (e.g. no upstream 
blocking, wave structure, and general steady flow behaviour). Other features such as 
flow unsteadiness, overturning (rotors) and non-axisymmetric vortical structures are 
not predicted. 

Several quantitative measurements for the different flow regimes are also 
presented. For Fi < 0.2, the separation bubble geometry, including length and 
horizontal separation angle, were measured and compared to the corresponding 
homogeneous flows past cylinders and spheres. Strouhal numbers for the two- 
dimensional vortex shedding regime were found to be St x 0.2, independent of both 
Re and Fi.  Lee wavelengths for Pi >, 0.1 in the (y = 0)-plane were found to be slightly 
overpredicted by linear theory. 

The structure of the three-dimensional vortices (i.e. symmetric and non-symmetric 
vortex shedding regimes) were examined, where the maximum vertical size of the 
vortices scaled with Fi0.5 and the Strouhal number exhibited dependence on Pi as 
well as Re. 

Sheppard’s formula for the dividing streamline was confirmed to be valid up to 
Fi x 0.4. The effects of an axisymmetric upstream shear were shown to alter the 
observed wake flow behaviour, as well as to introduce upstream recirculation flow 
patterns (see Appendix). 

This paper represents the consolidation of the results of independent laboratory 
experimental research programs at  the University of Wyoming and Arizona State 
University. 
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Appendix. Discussion of towing methods 
The use of a tow-tank for studying flow past objects in a stratified fluid has a 

number of advantages and some disadvantages (Gad-el-Hak 1987). The obvious 
advantages include being able to maintain and control the density structure and the 
object's velocity-time history and the capability to achieve a wide range of speeds 
between tests over a relatively short time. The disadvantages include the influence 
of the confining walls on the internal wave field and velocity structure and the finite 
time available for performing quantitative measurements. 

For axisymmetric bodies, the method of towing is also of concern, as any 
attachment, will, to some degree, influence the flow. Three methods of towing have 
been used in these studies : a tow-wire extending through the tank centre and an aft- 
mounted sting (UW studies) and a tow-wire attached to an oblique angle to the tank 
centreline (ASU investigations). A fourth method, used by Lofquist & Purtell(1984), 
employed a vertical wire attached to the sphere. The upper support of the wire was 
towed along a horizontal track above the water surface. (This method was used to 
estimate drag on the sphere by measuring the angle off the vertical of the wire.) A 
variation of this has been used by Mason (1977) where the sphere was suspended from 
a long vertical wire and was allowed to traverse the tank, acting as a pendulum bob. 

The along-tank tow-wire arrangement did not require an external tow carriage, 
allowed for tests to be easily made in both directions and did not introduce the 
potential of flow disturbances from a vertical traverser support. The singular 
disadvantage is the viscous boundary layer created by the moving wire itself. The 
effect of this induced boundary layer caused sufficient concern for this tow-wire 
arrangement to be discarded in favour of the sting mount in the UW experiments. 

The induced viscous flow which exists adjacent to a tow-wire may be examined by 
using the solution of the suddenly accelerated infinite cylinder (Carslaw & Jaeger 
1959, pp. 334-6). The viscous boundary layer behaviour, for the experimental 
parameters applicable to the present experiments, is shown in the dimensional plot 
of figure 33, where the boundary-layer thickness is shown as a function of time. An 
arbitrary value of u(S) /U = 0.05 (relative to a stationary observer, where U ( T )  is the 
velocity in the wire-induced boundary layer) was assigned to provide an estimate of 
the boundary-layer thickness, So.o6. The essential conclusion is that towing wires 
induce a strong upstream axisymmetric shear in all cases where an established flow 
around the sphere could be assumed. For example, if an arbitrary traverse length of 
ten diameters was taken to be necessary for an established flow to exist, the 
minimum elapsed time for any test using the present experimental parameters, 
would be 2.5 s at a traverse speed, U = 5 cm s-' and a sphere diameter, d = 1.27 cm. 
Another criterion for established flow would be Nt > 1, which, for N - 1.2 s-l, would 
also imply t > 1 s. From figure 33, the wire-induced boundary-layer thickness for this 
example is So.,, x 0.4 cm which is 63 % of the sphere radius. All other experimental 
conditions developed even thicker wire-induced boundary layers. 

A series of tests performed using a horizontal tow-wire provided an opportunity to 
examine the wake characteristics of a sphere exposed to an axisymmetric upstream 
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FIGURE 34. Example of upstream flow due t o  tow-wire induced viscous boundary layer (Re = 1370, 
Fi = 0.38). (a) Top view photograph, using reflective flakes; ( b )  side-view shadowgraph. 

shear flow. A flow regime diagram was developed for the tow-wire experiments 
(based on over 150 tests). A comparison of the two flow regimes using the tow-wire 
and sting mount revealed that for the tow-wire tests: 

(i) the a,, A, regime extended down to Re x 25 (see figures 2 and 6); 
(i i)  the v,,V, regime was observed down to Re z 100; 
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(iii) the L', L regime was observed for the same range of Fi as for the sting - the 
internal flow structure in the ( z  = 0)-plane within the wakes, however, 
correspond to the Re regime boundaries discussed above ; 

(iv) n, N flows, where the two wakes were clearly separated, were not observed; 
and 

(v) the transition to a collapsed narrow turbulent wake occurred a t  lower Fi ,  Re 
values. 

In summary, flow-field comparisons were not consistent between the two methods 
(with the exception of Pi x 0.4, for which wave motion dominates the dynamics). It 
is concluded that whenever viscous effects play a principal role in the near-wake 
structure, the along-tank tow-wire boundary layer alters the flow. 

For the higher Fi tow-wire studies, the wire boundary layer created an interesting 
recirculation zone immediately upstream of the sphere, as shown in figure 34. These 
upstream recirculating zones are also visible in the photographs of Pao (1968) (as 
reproduced by Turner 1973) and Hopfinger (1987), and have been incorrectly termed 
blocking regions by Chashechkin (1989). The oblique tow-wire arrangement used in 
the ASU experiments eliminated the difficulties introduced by the along-tank tow- 
wire method. 
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